I’m going to present two prediction algorithms, one with a run time that is polynomial in the number of items in the underlying dataset, and another that is extremely fast, with an average case run time that appears to be significantly less than O(log(n)), where n is the number of items in the dataset.

I believe this second algorithm could turn out to be a powerful and novel tool in AI, since, in addition to accurately predicting data, it is so fast that it can quickly take an entire dataset, and reproduce it, regardless of the complexity of the original dataset. Another way to think about this is that this prediction algorithm is so good and so fast, that random inputs to the algorithm end up generating a new version of the original dataset, allowing it to expand the domain of a function, and in the extreme case, quickly imitate the structure of a three-dimensional object.

This is possible because these algorithms don’t attempt to interpolate data, and as a result, any inputs that don’t map well to the existing dataset are rejected. This allows us to provide the algorithm with random inputs, some of which will successfully map to the original dataset, which will accumulate over time, and eventually generate a new dataset that is similar to the original. Put in more formal terms, not only can this algorithm predict values in the range of a function, it can also reproduce and expand the domain of a function that it has analyzed.

I believe generalizations of this approach could yield even more impressive results in other areas of AI, beyond spatial pattern recognition. As a result, this is a long post that goes through all of the theory underlying the prediction techniques that allow these algorithms to work.

**Categorizing Prior Data**

The first step to both prediction algorithms is to use the categorization algorithm I presented below in the previous post entitled, “Fast N-Dimensional Categorization Algorithm”. When applied to a dataset, the categorization algorithm takes a dataset, and, as its name suggests, partitions it into a series of categories. In order to get a better sense of how the prediction algorithms work, I’ll briefly review how the categorization algorithm works.

In addition to categorizing data, the categorization algorithm will also produce two sets of variables: a single value called “delta”, and a series of values called “anchors”. Each category generated by the algorithm has an anchor, which is the data point about which the category is centered. That is, the algorithm searches through the dataset and finds a set of data points about which the dataset is clustered. Each anchor defines a category, since the data within each category is clustered around its anchor. We don’t have to specify how many categories / clusters the algorithm should produce ex ante. Instead, the algorithm decides on its own how many categories are appropriate in the context of the dataset.

As noted, each category is centered around an anchor value. Specifically, all of the vectors within a given category are within delta of the anchor for that category. That is, the norm of the difference between each vector within a given category and the anchor for that category is always less than delta. In short, delta is the natural, in-context distance between elements of the same category, based upon some assumptions rooted in information theory that I explain in the previous post below.

For example, assume we have the following dataset of 3-space vectors:

data_array{1} = [5.19858 0.61943 0.00000];

data_array{2} = [9.82500 3.40620 10.0000];

data_array{3} = [4.76372 0.20080 0.00000];

data_array{4} = [5.54710 9.43410 10.0000];

data_array{5} = [6.91330 2.81581 0.00000];

data_array{6} = [9.05740 9.94230 20.0000];

data_array{7} = [2.86459 5.11068 0.00000];

data_array{8} = [5.99046 0.26573 0.00000];

The categorization algorithm can be applied to this dataset using the following code:

[data_categories_array category_vec anchor_array H_final delta] = optimize_categories_3D(data_array,0);

Application of the categorization algorithm to this dataset yields the following categorization:

data_categories_array =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

4.76372 0.20080 0.00000

[1,3] =

6.91330 2.81581 0.00000

[1,4] =

2.86459 5.11068 0.00000

[1,5] =

5.99046 0.26573 0.00000

}

[1,2] =

{

[1,1] =

9.82500 3.40620 10.00000

}

[1,3] =

{

[1,1] =

5.54710 9.43410 10.00000

}

[1,4] =

{

[1,1] =

9.05740 9.94230 20.00000

}

That is, the algorithm divides the dataset into four categories, which appear to be most sensitive to the z-value of the data in this case. The first category contains 5 elements, and the remaining three categories each contain a single element. Note that the anchors generated by the algorithm are returned in the anchor_array, and in this case, the anchor for the first category is [5.19858 0.61943 0.00000]. The value of delta produced by the algorithm is 5.0711. As a result, all of the vectors in the first category are within delta of the first anchor vector, which you can check by taking the norm of the difference between the anchor and any vector in the first category. Note that applying the algorithm generates a single value of delta for all four categories.

In short, all vectors in the same category are within delta of the category’s anchor. As a result, though the goal of the algorithm is to generate categories, we can recharacterize the algorithm as generating a set of anchors, and a single value of delta, which will together define the categories it ultimately produces. That is, if I identify certain vectors within a dataset as anchors, and specify a value of delta, then I’ve defined a categorization of the dataset. We will use this fact later on to construct the “fast” prediction algorithm that looks only to the anchors and the value of delta. But first, we’ll begin with some assumptions and observations rooted in information theory that will inform our “full” prediction algorithm, which we’ll then approximate with the fast algorithm.

**Categorization, Structure, and Entropy**

The fundamental observation underlying nearly all of the work in AI that I’ve presented in this project is that if we want to find the “natural” structure of some artifact without any prior information, then we first represent the artifact as a mathematical object capable of producing a measure of entropy, such as a vector, matrix, graph, or set of probabilities, and then repeatedly partition that representation until we find the point where the entropy of the partition changes the most. That is, we take the object, and iteratively partition it into smaller and smaller objects, which will affect our measurement of the object’s entropy. During this process, there’s going to be a level of subdivision where the structure of the partitioned object will “crack”, producing the maximum rate of change to the entropy of the partition, thereby uncovering the actual structure of the artifact which the object represents.

For an intuitive, visual explanation of how and why this process works, see the post below entitled, “Image Recognition with no Prior Information”.

Turning this view on its head, we can measure how well a new data point fits into an existing dataset by measuring how much the entropy of the categorization changes after inclusion of the new data point. That is, if a new data point is a good fit for a dataset, then it shouldn’t disturb the existing category structure much, resulting in a low change to the entropy of the category structure. In contrast, if a new data point is a bad fit for a dataset, then it will significantly disturb the structure of the categories, resulting in a large change to the entropy of the category structure.

Continuing with the example above, assume we’re given the following new data point:

data_array{9} = [5.19858 0.62000 0.00000];

This is obviously very close to the anchor of the first category, and as a result, it’s reasonable to view this data point as a good fit for the existing dataset. To test whether this is actually the case, we insert this new data point into the dataset, and then rerun the categorization algorithm on the resulting dataset. Because we’re rerunning the categorization algorithm, it is possible for the anchors to change. As a result, we can’t predict to which category the new data point will belong, since those categories could change as a result of the inclusion of the new data point. Instead, we measure how well the new data point fits by measuring how much the entropy of the categorization changes as a result of its inclusion.

The entropy of the categorization is calculated by taking the number of data points in each category, and dividing each by the total number of data points, which will produce a probability for each category. We then take the entropy of this set of probabilities as if it represented an actual probability distribution.

In this case, as expected, the new data point does not change the category structure significantly, and instead, the new data point is categorized together with what was the anchor for the first category in the prior run, producing the following category structure.

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

4.76371 0.20080 0.00000

[1,3] =

6.91329 2.81581 0.00000

[1,4] =

2.86458 5.11067 0.00000

[1,5] =

5.99046 0.26573 0.00000

[1,6] =

5.19858 0.62000 0.00000

}

[1,2] =

{

[1,1] =

9.82500 3.40620 10.00000

}

[1,3] =

{

[1,1] =

5.54710 9.43410 10.00000

}

[1,4] =

{

[1,1] =

9.05740 9.94230 20.00000

}

}

The first category contains 6 elements, and the remaining 3 categories each contain 1 element. As a result, the entropy of the categorization is given by the following:

H = (6/9)*log2(9/6) + 3*((1/9)*log2(9)) = 1.4466.

The entropy of the original categorization is 1.5488. As a result, the change to the entropy of the categorization is in this case small, and negative, -0.10218, since the new data item increases the size of the first category, concentrating more of the data into a single category, and in turn reducing the entropy of the categorization (note that entropy is minimized when one category contains all of the data points).

Now assume that we are given the following new data point:

data_array{9} = [9.83000 3.40700 10.10000];

This is very close to the only vector in the second category, and as a result, this new data point should also be a good fit for the existing data. However, it’s not a good fit for the largest category, but is instead a good fit for a small category. In some sense, this implies that it’s actually not as good of a fit as the first new data point we considered above, since this new data point is similar to only one existing data point, as opposed to being similar to a large number of existing data points.

Application of the categorization algorithm produces the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.198583 0.61943 0.00000

[1,2] =

4.76372 0.20080 0.00000

[1,3] =

6.91330 2.81581 0.00000

[1,4] =

2.86459 5.11068 0.00000

[1,5] =

5.99046 0.26573 0.00000

}

[1,2] =

{

[1,1] =

9.82500 3.40620 10.00000

[1,2] =

9.83000 3.40700 10.10000

}

[1,3] =

{

[1,1] =

5.54710 9.43410 10.00000

}

[1,4] =

{

[1,1] =

9.05740 9.94230 20.00000

}

}

As expected, the category structure is not disturbed, and instead, the new data point is inserted into the same category as the existing data point to which it is most similar. In this case, the change in entropy is small, and positive, 0.10895, since the new data point increases the size of a small category, thereby increasing the entropy of the categorization (note that entropy is maximized when all categories contain an equal number of data points). In this case, the magnitude of the change in entropy is greater than it was in the previous example, which is consistent with our observation that while the new data point is certainly a good fit, it is not as a good of a fit as the first example we considered above.

Now assume that we’re given the following data point:

data_array{9} = [45.15000 16.80000 4.90000];

This data point is probably not a good fit for the existing data, as its distance from any anchor is significantly larger than delta. As a result, we should expect the inclusion of this new data point to disturb the category structure.

Application of the categorization algorithm produces the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

9.82500 3.40620 10.00000

[1,3] =

4.76372 0.20080 0.00000

[1,4] =

6.91330 2.81581 0.00000

[1,5] =

2.86459 5.110678 0.00000

[1,6] =

5.99046 0.26573 0.00000

}

[1,2] =

{

[1,1] =

5.54710 9.43410 10.00000

[1,2] =

9.05740 9.94230 20.00000

}

[1,3] =

{

[1,1] =

45.15000 16.80000 4.90000

}

}

In this case, the change in entropy is significant, and negative, -0.32440, as the new data point forced the existing data into a smaller number of larger categories. Put informally, in the context of the new data point, the rest of the data seems closer together, and as a result, the categorization algorithm increases the value of delta, which is in this case 11.902, thereby concentrating all of the existing data into two categories, and creating a third category for the new data point. It is reasonable to conclude that this new data point is, therefore, not a good fit for the existing data.

Now assume we are given the following new data point:

data_array{9} = [15031.60000 1001.69000 10386.80000];

This is obviously not a good fit for the existing data, and therefore, will probably significantly disturb the existing category structure.

Application of the categorization algorithm yields the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

9.82500 3.40620 10.00000

[1,3] =

4.76371 0.20080 0.00000

[1,4] =

5.54710 9.43410 10.00000

[1,5] =

6.91329 2.81581 0.00000

[1,6] =

9.05740 9.94230 20.00000

[1,7] =

2.86458 5.11067 0.00000

[1,8] =

5.99046 0.26572 0.00000

}

[1,2] =

{

[1,1] =

15031.60000 1001.69000 10386.80000

}

In this case, the change in entropy is even more significant, and negative, -1.0455, as all of the existing data is forced into a single category due to an increase in delta, which is in this case 299.93.

As a result, this approach allows us to construct an objective binary test for whether or not a new data point is a good fit for an existing dataset. Specifically, if a new data point ends up in a category of one, on its own, then it is not a good fit for the existing data. If it is included in a category that contains at least two data points, then it is a good fit. Further, we can also measure how well the data fits into the dataset by measuring the change in entropy of the categorization. This will in turn allow us to distinguish among good fits, and among bad fits, thereby allowing us to objectively determine best fits and worst fits, and everything in between.

**Predicting Unknown Variables**

The key takeaway from the analysis in the sections above is that we can measure how well a new data point fits into an existing dataset by measuring the change in entropy of the categorization that results from the inclusion of the new data point. In this case, I’ve used my own categorization algorithm to demonstrate this concept, but we could in theory use any categorization / clustering algorithm, and then test the entropy of the resultant categorization in the same manner.

As a result, the principle is a general one: we can measure how well a new data point fits into a dataset by measuring the change in the entropy of the structure of the dataset that results from inclusion of the new data point.

Now assume that we are given a new data point, but that the z-value is unknown. For example, assume that we’re given the vector [5.19859 0.61944 Z]. Further, assume that we’d like to predict the value of Z. Without any context, there’s no value of Z that’s preferable to any other. That is, there’s no ex ante value of Z that makes more sense than any other, and as a result, we need a dataset from which we can derive a value of Z that makes sense in the context of that dataset. As a result, predicting the value of a single hidden variable is a fundamentally different problem than the other problems I’ve addressed previously in this project, none of which require any prior data. This is because a dataset, or an image, can create its own context from which information can be extracted using the methods I presented in the other posts below. In contrast, a single data point is just that – a point in isolation, with no relationships to consider, and therefore, no context to consider.

At the risk of harping on the wonders of music, which I’m certainly guilty of, this is like asking what the key of a song is when you’re only given one note. The correct answer is in this case, “I don’t know”. If you hear two notes, you have a better idea. Three notes, better still. As the number of notes played increases over time, you can more confidently guess the key of the song, which is the context in which you perceive the notes. Clever composers consciously toy with these ideas, playing the same melody in the context of two different key signatures, and deliberately crafting melodies that have no obvious key signature. Jazz musicians are notorious for doing this, particularly at the end of a song, where they’ll throw in a “surprise ending” that completely changes the context of everything you’ve just listened to. For those that are interested, have a listen to the end of this Ella Fitzgerald song, which I’ve cued up in the following link https://www.youtube.com/watch?v=mshV7ug8cdE&feature=youtu.be&t=438. At the 7:27 mark, the pianist quietly changes the key, and therefore, the context of the entire song.

Similarly, data needs context in order to be understood, and a single data point by definition has only a cosmic, universal context, which I’m certainly not prepared to address. As a result, if we want to predict some unknown variable, we need an assumed context in which we’re predicting that unknown variable.

So let’s consider the new data point in the context of the original dataset we analyzed above. The original dataset generates four categories, which are in turn defined by four anchors. As a result, if the new data point is a good fit for the dataset, then the value of Z has to be similar to the z-value of at least one anchor. Therefore, we can iterate through the z-values of each anchor, treating the z-value of each anchor as an assumed value for Z, insert the resultant data point into the existing dataset, and categorize the resulting new dataset. If there is at least one assumed value of Z that causes the new data point to be categorized together with an existing data point, then the x and y values of the new data point are a good fit for the existing dataset. If there are multiple assumed values of Z that cause the new data point to be categorized with some existing data points, then we can choose the value of Z that minimizes the change in the entropy of the categorization. That is, first we test to see if the new data point is a good fit by testing whether there’s at least one assumed value of Z that causes it to be categorized together with some existing data points, and then, if there’s more than one such value, we choose the value of Z that caused the least disturbance to the existing category structure.

In short, first we test to see if the new data point is a good fit, and if it is a good fit, then we choose the z-value that produces the best fit. We’ll address this topic again at the end of this section.

Let’s begin by assuming that Z = 0.00000, i.e., the z-value of the first anchor. This implies that,

data_array{9} = [5.19859 0.61944 0.00000];

Application of the categorization algorithm yields the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

4.76372 0.20080 0.00000

[1,3] =

6.91330 2.81581 0.00000

[1,4] =

2.86459 5.11068 0.00000

[1,5] =

5.99046 0.26573 0.00000

[1,6] =

5.19859 0.61944 0.00000

}

[1,2] =

{

[1,1] =

9.82500 3.40620 10.00000

}

[1,3] =

{

[1,1] =

5.54710 9.43410 10.00000

}

[1,4] =

{

[1,1] =

9.05740 9.94230 20.00000

}

}

The change in entropy is in this case -0.10218, and as expected, the new data item fits well into the first category, since it is very close to the anchor for the first category.

Now assume that Z = 10, i.e., the z-value of the second anchor.

Application of the the categorization algorithm yields the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

4.76372 0.20080 0.00000

[1,3] =

6.91330 2.81581 0.00000

[1,4] =

2.86459 5.11068 0.00000

[1,5] =

5.99046 0.26573 0.00000

}

[1,2] =

{

[1,1] =

9.82500 3.40620 10.00000

}

[1,3] =

{

[1,1] =

5.54710 9.43410 10.00000

}

[1,4] =

{

[1,1] =

9.05740 9.94230 20.00000

}

[1,5] =

{

[1,1] =

5.19859 0.61944 10.00000

}

}

In this case, the new data point is categorized on its own, which implies that assuming Z = 10 does not produce a good fit. The change in entropy is in this case 0.3312, since a new category is created, thereby increasing the entropy of the categorization. Assuming Z = 20 produces the same outcome, together implying that Z = 0 is the only good fit for the (x,y) values [5.19858 0.61944].

Note that this method does not interpolate the value of Z, but instead tests known values of Z taken from the dataset itself. As a result, using this approach on an outlier data point will cause the data point to fail to categorize (i.e., end up in a category by itself) for each assumed value of Z. Put simply, if the new data point fails to categorize for every known value of Z, then in that case, our dataset doesn’t provide any information about the value of Z, and therefore, we’re no better off than we would be in attempting to predict the value of Z in a vacuum.

**Approximating the Full Algorithm**

Though the method above is useful, theoretically interesting, and reasonably fast, we can approximate it using another approach that is extremely fast. Specifically, note that when the new data point is not an outlier, the category structure is not significantly disturbed, and in the worst case of a quasi-outlier, a new category of one is created, without otherwise disturbing the existing categories. This in turn implies that the value of delta should not change much as a result of the inclusion of the new data point into the dataset, provided it’s a reasonable fit for the dataset. Therefore, we can approximate the behavior of the prediction method described above by simply testing whether or not the new data point is within delta of each anchor, using the assumed z-values of each anchor. If this turns out to be the case, then we know that our new data point is a reasonably good fit for the existing dataset, since there is a category to which it would be included, if we ignore the effects of the inclusion of that new data point. In short, if we “freeze” the existing category structure and the value of delta, we can simply test whether our new data item is within delta of some anchor.

Let’s run through the same example given above, but this time, rather than rerun the categorization algorithm, we’re going to simply test whether or not the new data item is within delta of some anchor, using the original value of delta = 5.0711, using each assumed value of Z.

Our first assumed value of Z is 0, producing the vector [5.19859 0.61944 0]. This new data point is very close to the first anchor, and as a result, the norm of the difference between our new data item and the first anchor is approximately 0, which is less than delta. This implies that assuming Z = 0 causes our new data item to be a good fit for the data, and since the norm of the difference is roughly zero, there’s really no point in testing the rest of the anchors, at least in this case.

Now assume that our new data point is instead [150.60000 89.12000 Z]. Because delta = 5.0711, there is clearly no assumed value of Z that will cause this vector to be categorized using this approach.

As a result, outlier data points will fail to categorize using this approximated approach as well, and so this approach allows us to quickly say whether or not the not a new data point is a good fit for the dataset. As such, it approximates the binary test of the algorithm above, as to whether or not a new data point can be included in the dataset at all, which in turn tells us whether or not our dataset can tell us anything about the unknown value Z.

We can, if we want, also measure how well the new data point fits by measuring the change in entropy that results from inserting the new data point into the dataset. This is useful in the case where the data point is within delta of two anchors, producing what should therefore be two reasonable values of Z. Though we ultimately won’t make use of this technique in the interest of speed, I’ll spend a moment describing how we could do this. First, we again assume that the structure of the dataset is unchanged, but for the inclusion of the new data point. We then measure the change in entropy that results from including the new data point into each category to which it fits. We then chose the category that changes the entropy of the dataset the least. This approach will ensure that we always choose the largest category, as opposed to the tightest fit. Which approach is best will depend upon our goal. If we want our predictions to be as close as possible to the existing data, then we should choose the category for which the distance between our new data item and the anchor is minimized, i.e., the tightest fit. If instead we want to assume that the structure of our dataset should change as little as possible, then we should choose the category that results in the smallest change in entropy.

Though it might seem odd to make use of an operating assumption that the structure of the dataset should change the least, note that if we were to actually include each new data point into the dataset, then if we didn’t make this assumption, eventually we would erode and possibly even destroy the structure of the categories. That is, repeatedly choosing the tightest fit could end up completely changing the structure of the categories. Nonetheless, because we are using this approach to predict data, and not to actually update the data in our dataset, this concern is academic, at least in this case.

Finally, note that in any case, the runtime of this algorithm is O(M), where M is the number of anchors, which is necessarily less than or equal to n, the number of data points in the dataset. As a practical matter, the value of M will depend upon the data. If the data is highly randomized, then M will be approximately equal to n. If the data has structure, then M could be extremely small compared to n, resulting in an extremely fast runtime. For example, it’s not inconceivable that a dataset that comprised of millions of data points consists of only a few top level categories, which would result in a negligible runtime. Nonetheless, when dealing with a large number of data points, it could be useful to further subdivide the dataset into smaller, more detailed categories, beyond the top level categories generated by one level of categorization. This is the approach that we will ultimately take, producing a remarkably fast and powerful prediction algorithm.

**Prediction Using a Data Tree**

As noted in the previous section, it could in some cases be useful to create deeper categories, beyond the top level categories generated by one single application of the categorization algorithm. Returning to our example above, one application of the algorithm produced a first category that contained five elements. We could in turn run the categorization algorithm again on that category, which will produce the following:

data_categories_array =

{

[1,1] =

{

[1,1] =

5.19858 0.61943 0.00000

[1,2] =

4.76372 0.20080 0.00000

[1,3] =

5.99046 0.26573 0.00000

}

[1,2] =

{

[1,1] =

6.91330 2.81581 0.00000

}

[1,3] =

{

[1,1] =

2.86459 5.11068 0.00000

}

}

That is, because the first category contains multiple elements, it is possible to run the categorization algorithm one more time to see if any further meaningful subdivision is possible. It turns out that in this case, the first category can be further subdivided into a set of three points that are all very close to each other, and two remaining points that are relatively isolated.

The value of delta produced by the categorization algorithm is in this case 0.90492, which is significantly smaller than the value produced at the top level of categorization, 5.0711. As a result, by categorizing one level down, we can produce categories that are significantly tighter, which will in turn allow us to match new data points within much smaller categories, thereby presumably producing tighter predicted values of Z.

By repeatedly applying the categorization algorithm in this fashion, we will produce a hierarchy of categories, beginning with the top layer categories generated by applying the algorithm to the original dataset, and continuing downward until we produce singletons, and categories that simply cannot be further subdivided. Expressed visually, this will produce a tree of categories, and as a result, a tree of anchors, and a tree of values of delta.

If we want to find the tightest fit for a new data point, we can begin at the bottom of the anchor tree, and test whether that new data point fits into any of the bottom level anchors, which will by definition correspond to the smallest values of delta. If that doesn’t work, then we proceed one level up, and test whether the new data point fits within any of the anchors within the second lowest level of the tree.

This method is implemented by the attached algorithms, generate_data_tree, which iteratively applies the categorization algorithm until the data trees are produced, and predict_best_fit_tree, which takes in a new data item and attempts to place it at the lowest possible level in the resultant data trees. Assuming the dataset is fixed, we’ll only have to produce the trees once, meaning that the only algorithm we’ll need to run to predict the z-value of a new data point is predict_best_fit_tree.

We can apply this method to the new data point [5.19000 0.61900 Z] using the following code:

[category_tree delta_tree anchor_tree] = generate_data_tree(data_array);

new_data_item{1} = [5.19 0.619 0];

[category_index predicted_z final_delta] = predict_best_fit_tree(anchor_tree, delta_tree, new_data_item,1);

The returned value predicted_z gives us our desired prediction for the value of z, which will in this case be 0, as expected.

The runtime complexity of predict_best_fit_tree will depend upon the dataset in question, but common sense suggests that it is unlikely to exceed O(log^2(n)), since the number of top level categories is probably not going to exceed M = log(n), and the depth of the tree is probably not going to exceed log(M). As a practical matter, predict_best_fit_tree runs in a tiny fraction of a second on an ordinary commercial laptop. This makes it practical to repeatedly feed it random inputs, ultimately allowing it to reconstruct and expand both the domain and the range of a function that has been analyzed by the generate_data_tree function, which I’ll address in the next section.

**Intimating Complex Data**

In the big picture, interpolation methods take computationally complex data, and force it into some computationally cheap shape, like a line, curve, or surface. In contrast, the approach I’ve outlined above inserts new data into the roughly natural, and therefore, computationally complex structure of the original dataset, but in a computationally cheap manner. In short, rather than fight the structure of the underlying data, we work with it, and as a result, we won’t have a smooth domain unless the original domain is smooth. Similarly, we won’t have a smooth range unless the original range is smooth. Instead, what the approach above produces is a dataset that is quantized into a discrete number of increasingly smaller spheres, each centered around data points that are, at various levels of categorization, treated as the center points for the categories they define.

As a result, repeated application of the predict_best_fit_tree algorithm to randomly generated new data will allow us to identify new data points that are similar to the original domain and range of the function. This is accomplished by the attached imitate_data script, which, when given the data tree of a function, and the approximate boundaries of its domain, can effectively reproduce the original dataset.

I’ve attached a few examples of how these algorithms can be used to imitate complex datasets, and a text file that contains the Octave code that will let you generate the datasets for yourself. Any point that fails to categorize is painted grey and mapped to the 0-plane. All points that categorize successfully are painted blue.

1. The Cylindrical “Flower Pot”

In this example, I’ve used a built-in Octave function to produce a three-dimensional surface that looks a bit like a flower pot. I then take the underlying point information, process it using the generate_data_tree function, which repeatedly categorizes the point information as if it were a dataset, and then imitate that dataset using the imitate_data function. The results are pretty awesome, and clearly reproduce the overall three-dimensional shape of the surface.

The first attached image shows the original surface, the second image shows the imitated surface generated by the imitate_data function, and the third image shows the top-level categories generated by the categorization algorithm. Proximate ‘o’ rings painted the same color are part of the same category. Large rings are part of a large category, and small rings are part of a small category.

Though this is just a surface, in theory, these algorithms could reproduce both the surface, and the internal structure of a three-dimensional object, suggesting that these algorithms might have applications in 3D printing, autocad, etc.

2. The Noisy Sine Wave

This is a noisy, discontinuous sine curve that I then reproduced using the imitate_data function. Macroscopically, the reproduction almost looks smooth, but up close you can quite plainly see that the algorithm reproduces not only the overall shape and specific values of the function, but also the patchiness of the domain and range of the function.

3. The Quadratic Plot

This is a simple quadratic curve that is smooth compared to the other functions.

The relevant scripts are here: