The Reality Of Mortgage Modification

Also published on the Atlantic Monthly’s Business Channel.

Why A Decline In Home Prices Should Not Cause Defaults

It seems that we have taken as an axiom the idea that if the price of a home drops below the face value of the mortgage, the borrower will default on the mortgage. That sounds like a good rule, since it’s got prices dropping and people defaulting at the same time, so there’s a certain intuitive appeal to it. But in reality, it makes no sense. Either the borrower can afford the mortgage based on her income alone or not.  However, it does make sense if you also assume that the borrower intended to access the equity in her home before the maturity of the mortgage. That is, the home owner bought the home with the intention of either i) selling the home for a profit before maturity or ii) refinancing the mortgage at a higher principle amount.

If neither of these are true, then why would a homeowner default simply because the home they lived in dropped in value? She wouldn’t. She might be irritated that she paid too much for a home. Additionally, she might experience a diminution in her perception of her own wealth, which may change her consumption habits. But the fact remains that at the time of purchase, she thought her home was worth X. And she agreed to a clearly defined schedule of monthly payments over the life of the mortgage assuming a price of X. The fact that the value of her home suddenly drops below X has no impact on her ability to pay, unless she planned to access equity in the home to satisfy her payment obligations.  Annoyed as she might be, she could continue to make her mortgage payments as promised.  Thus, those mortgages which default due to a drop in home prices are the result of a failed attempt to access equity in the home, otherwise known as failed speculation.

In short, if a home drops in value, it does not affect the cash flows of the occupants so long as no one plans to access equity in the home. And so, the ability of a household to pay a mortgage is unaffected in that situation. This is in contrast to being fired, having a primary earner die, or divorce. These events have a direct impact on the ability of a household to pay its mortgage.

I am unaware of any proposal to date which offers assistance to households in need under such circumstances.

The Dismal Science Of Mortgage Modification

Simply put, available evidence suggests that mortgage modifications do not work.

[IMAGES REMOVED BY UST; SEE REPORT LINK BELOW]

The charts above are from a study conducted by the Office Of the Comptroller of the Currency. The full text is available here. As the charts above demonstrate, within 8 months, just under 60% of modified mortgages redefault. That is, the borrowers default under the modified agreement. If we look only at Subprime mortgages, just over 65% of modified mortgages redefault within 8 months. This may come as a surprise to some. But in my mind, it reaffirms the theory that many borrowers bought homes relying on their ability to i) sell the home for a profit or ii) refinance their mortgage. That is, it reaffirms the theory that many borrowers were unable to afford the homes they bought using their income alone, and were actually speculating that the value of their home would increase.

Morally Hazardous And Theoretically Dubious

Why should mortgages be adjusted at all? Well, one obvious reason to modify is that the terms of the mortgages are somehow unfair. That’s a fine reason. But when did they become unfair? Were they unfair from the outset? That seems unlikely given that both the borrower and the lender voluntarily agree to the terms of a mortgage. Although people like to fuss about option arm mortgages and the like, the reality is, it’s not that hard for a borrower to understand that her payments will increase at some point in the future. Either she can afford the increased payments or not. This will be clear from the outset of the mortgage.

So, it doesn’t seem like there’s much of a case for unfairness at the outset of the agreement. Well then, did the mortgage become unfair? Maybe. If so, since the terms didn’t change, it must be because the home dropped in value and therefore the borrower is now paying above the market price for the home. That does sound unfortunate. But who should bear the loss? Should the bank? The tax payer? How about the borrower? Well, the borrower explicitly agreed to bear the loss when she agreed to repay a fixed amount of money. That is, the borrower promised “to pay back X plus interest within 30 years.” This is in contrast to “I promise to pay back X plus interest within 30 years, unless the price of my home drops below X, in which case we’ll work something out.” Both are fine agreements. But the former is what borrowers actually agree to.

Not enforcing voluntary agreements leads to uncertainty. Uncertainty leads to inefficiency. This is because those who have agreements outstanding or would like to enter into other agreements cannot rely on the terms of those agreements. And so the value of such agreements decreases and the whole purpose of contracting is defeated. In a less abstract sense, uncertainty creates an environment in which it is impossible to plan and conduct business. As a result, this type of regulatory behavior undermines the availability of credit.

But even if we do not accept that voluntary agreements should be enforced for reasons of efficiency, mortgages represent some of the most clear and unambiguous promises to repay an obligation imaginable. The fact that a borrower was betting that home prices would rise should not excuse them from their obligations. There are some situations where human decency and compassion could justify a readjustment of terms and socializing the resultant losses. For example, the death of a primary earner or an act of war or terrorism. But making a bad guess about future home prices is not an act that warrants anyone’s sympathy, let alone the socialization of the losses that follow.

The Elephant In The Room

This notion that Subprime borrowers were victimized as a result of some fraudulent wizardry perpetuated by Wall Street is utter nonsense. Whether securitized assets performed as promised to investors is Wall Street’s problem. Whether people pay their mortgages falls squarely on the shoulder of the borrower. Despite this, we are spending billions of public dollars, at a time when money is scarce and desperately needed, on a program that i) is demonstrably ineffective at achieving its stated goals (helping homeowners avoid foreclosure) and ii) rewards poor decision making and imprudent borrowing. Given the gravity of the moment, a greater failure is difficult to imagine. But then again, we live in uncertain times, so my imagination might prove inadequate.

Credit Default Swaps And Mortgage Backed Securities

Like Your Grandsire In Alibaster

In this article, I will apply my usual dispassionate analysis to the role that credit default swaps play in the world of Mortgage Backed Securities (MBSs). We will take a brief look at the interactions between the issuance of mortgages, MBSs, and how the concept of loss plays out in the context of derivatives and mortgages. Then we will explore how the expectations of the parties to a lender/borrower relationship differ from that of a protection seller/buyer relationship and how credit default swaps, by allowing markets to express a negative view of mortgage default risk, facilitate price correction and mitigate net losses. This is done by applying the concepts in my previous article, The Demand For Risk And A Macroeconomic Theory of Credit Default Swaps: Part 2, to the context of credit default swaps on MBSs. This article can be considered a more concrete application of the concepts in that article, which will hopefully clear up some of the confusion in that article’s comment section.

The Path Of Funds In the MBS Market

Mortgage backed securities allow investors to gain exposure to the housing market by taking on credit risk linked to a pool of mortgages. Although the underlying mortgages are originated by banks, the existence of investor demand for MBSs allows the originators to effectively pass the mortgages off to the investors and pocket a fee. Thus, the greater the demand for MBSs, the greater the total value of mortgages that originators will issue and ultimately pass off to investors. So, the originators might front the money for the mortgages in many cases, but the effective path of funds is from the investors, to the originators, and onto the borrower. As a result, investors in MBSs are the effective lenders in this arrangement, since they bear the credit risk of the mortgages.

This market structure also has an effect on the interest rates charged on the underlying mortgages. As investor demand for MBSs increases, the amount of cash available for mortgages will increase, pushing the interest rates charged on the underlying mortgages down as originators compete for borrowers.

Loss In The Context Of Derivatives And Mortgages

I often note that derivatives cannot create net losses in an economy. That is, they simply transfer money between two parties. If one party loses X, the other gains X, so the net loss between the two parties is zero. For more on this, go here. This is not the case with a mortgage. The lender gives money to the borrower, who then spends this money on a home. Assume that a lender and borrower entered into a mortgage and that before maturity the value of the home falls, prompting the borrower to default on its mortgage. Further assume that the lender forecloses on the property, selling it at a loss. Since the buyer receives none of the foreclosure proceeds, the buyer can be viewed as either neutral or incurring a loss, since at least some of the borrower’s mortgage payments went towards equity ownership and not just occupancy. It follows that there is a loss to the lender and either no change in or a loss to the borrower and therefore a net loss. This demonstrates what we have all recently learned: poorly underwritten mortgages can create net losses.

Net Losses And Efficiency

You can argue that even in the case that both parties to an agreement incur losses, the net loss to the economy is zero, since the cash transferred under the agreement was not destroyed but merely moved through the economy to market participants that are not a party to the agreement. That is, if you expand the number of parties to a sufficient degree, all transactions will net to zero. While this must be the case, it misses an essential point: I am using net losses to bilateral agreements as a proxy for inefficient allocation of capital. That is, both parties expected to benefit from the agreement, yet both lost money, which implies that neither benefited from the agreement. For example, in the case of a mortgage, the borrower expects to pay off the mortgage but benefit from the use and eventual ownership or sale of the home. The lender expects to profit from the interest paid on the mortgage. When both of these expectations fail, I take this as implying that the initial agreement was an inefficient allocation of capital. This might not always be the case and depends on how you define efficiency. But as a general rule, it is my opinion that net losses to a bilateral agreement are a reasonable proxy for inefficient allocation of capital.

Expectations Of Lender/Borrower vs. Protection Seller/Buyer

As mentioned above, under a mortgage, the lender expects to benefit from the interest paid on the mortgage while the borrower expects to benefit from the use and eventual ownership or sale of the home. Implicit in the expectations of both parties is that the mortgage will be repaid. Economically, the lender is long on the mortgage. That is, the lender gains if the mortgage is fully repaid. Although application of the concepts of long and short to the borrower’s position is awkward at best, the borrower is certainly not short on the mortgage. That is, in general, the borrower does not gain if he fails to repay the mortgage. He might however mitigate his losses by defaulting and declaring bankruptcy. That said, the takeaway is that both the lender and the borrower expect the mortgage to be repaid. So, if we consider only lenders and borrowers, there are no participants with a true short position in the market. Thus, price, which in this case is an interest rate, will be determined by participants with similar positive expectations and incentives. Anyone with a negative view of the market has no role to play and therefore no effect on price.

This is not the case with credit default swaps (CDSs) referencing MBSs. In such a CDS, the protection seller is long on the MBS and therefore long on the underlying mortgages, and the protection buyer is short. That is, if the MBS pays out, the protection seller gains on the swap; and if the MBS defaults, the protection buyer gains on the swap. Thus, through the CDS, the two parties express opposing expectations of the performance of the MBS. Thus, the CDS market provides an opportunity to express a negative view of mortgage default risk.

The Effect Of Synthetic Instruments On “Real” Instruments

As mentioned above, the CDS market provides a method of shorting MBSs. But how does that effect the price of MBSs and ultimately interest rates? As described here, the cash flows of any bond, including MBSs, can be synthesized using Treasuries and CDSs. Using this technique, a fully funded synthetic bond consists of the long end of a CDS and a Treasury. The spread that the synthetic instrument pays over the risk free rate is determined by the price of protection that the CDS pays the investor (who in this case is the protection seller). One consequence of this is that there are opportunities for arbitrage between the market for real bonds and CDSs if the two markets don’t reach an equilibrium, removing any opportunity for arbitrage. Because this opportunity for arbitrage is rather obvious, we assume that it cannot persist. That is, as the price of protection on MBSs increases, the spread over the risk free rate paid by MBSs should widen, and visa versa. Thus, as the demand for protection on MBSs increases, we would expect the interest rates paid by MBSs to increase, thereby increasing the interest rates on mortgages. Thus, those with a negative view of MBS default risk can raise the cost of funds on mortgages by buying protection through CDSs on MBSs, thereby inadvertently “correcting” what they view as underpriced default risk.

In addition to the no-obvious-arbitrage argument outlined above, we can consider how the existence of synthetic MBSs affects the supply of comparable investments, and thereby interest rates. As mentioned above, any MBS can be synthesized using CDSs and Treasuries (when the synthetic MBS is unfunded or partially funded, it consists of CDSs and other investments, not Treasuries). Thus, investors will have a choice between investing in real MBSs or synthetic MBSs. And as explained above, the price of each should come to an equilibrium that excludes any opportunity for obvious arbitrage between the two investments. Thus, we would expect at least some investors to be indifferent between the two.

path_of_fundsDepending on whether the synthetics are fully funded or not, the principle investment will go to the Treasuries market or back into the capital markets respectively. Note that synthetic MBSs can exist only when there is a protection buyer for the CDS that comprises part of the synthetic. That is, only when interest rates on MBSs drop low enough, along with the price of protection on MBSs, will protection buyers enter CDS contracts. So when protection buyers think that interest rates on MBSs are too low to reflect the actual probability of default, their desire to profit from this will facilitate the issuance of synthetic MBSs, thereby diverting cash from the mortgage market and into either Treasuries or other areas of the capital markets. Thus, the existence of CDSs operates as a safety valve on the issuance of MBSs. When interest rates sink too low, synthetics will be issued, diverting cash away from the mortgage market.

Synthetic CDOs, Ratings, And Super Senior Tranches: Part 3

Prescience and Precedent

In the previous articles (part 1 and part 2), we discussed both the modeling and rating of  CDOs and their tranches. In this article, we will discuss the rating of synthetic CDOs and those fabled “super senior” tranches. As mentioned in the previous articles, I highly recommend that you read my article on Synthetic CDOs and my article on tranches.

Funded And Unfunded Synthetic CDOs

As explained here, the asset underlying a synthetic CDO is a portfolio of the long positions of credit default swaps. That is, investors in synthetic CDOs have basically sold protection on various entities to the CDS market through the synthetic CDO structure. Although most CDS agreements will require collateral to be posted based on who is in the money (and may also require an upfront payment), as a matter of market practice, the protection seller does not fund the long position. That is, if A sold $1 million worth of protection to B, A would not post the $1 million to B or a custodian. (Note that this is a market convention and could change organically or by fiat at any moment given the current market context). Thus, B is exposed to the risk that A will not payout upon a default.

Because the long position of a CDS is usually unfunded, Synthetic CDOs can be funded, unfunded, or partially funded. If the investors post the full notional amount of protection sold by the SPV, then the transaction is called a fully funded synthetic CDO. For example, if the SPV sold $100 million worth of protection to the swap market, the investors could put up $100 million in cash at the outset of the synthetic CDO transaction. In this case, the investors would receive some basis rate, usually LIBOR, plus a spread. Because the market practice does not require a CDS to be funded, the investors could hang on to their cash and simply promise to payout in the event that a default occurs in one of the CDSs entered into by the SPV. This is called an unfunded synthetic CDO. In this case, the investors would receive only the spread over the basis rate. If the investors put up some amount less than the full notional amount of protection sold by the SPV, then the transaction is called a partially funded synthetic CDO. Note that the investors’ exposure to default risk does not change whether the transaction is funded or unfunded. Rather, the SPV’s counterparties are exposed to counterparty risk in the case of an unfunded transaction. That is, the investors could fail to payout upon a default and therefore the SPV would not have the money to payout on the protection it sold to the swap market. Again, this is not a risk borne by the investors, but by the SPV’s counterparties.

Analyzing The Risks Of Synthetic CDOs

As mentioned above, whether a synthetic CDO is funded, unfunded or partially funded does not affect the default risks that investors are exposed to. That said, investors in synthetic CDOs are exposed to counterparty risk. That is, if a counterparty fails to make a swap fee payment to the SPV, the investors will lose money. Thus, a synthetic CDO exposes investors to an added layer of risk that is not present in an ordinary CDO transaction. So, in addition to being exposed to the risk that a default will occur in any of the underlying CDSs, synthetic CDO investors are exposed to the risk that one of the SPV’s counterparties will fail to pay. Additionally, there could be correlation between these two risks. For example, the counterparty to one CDS could be a reference entity in another CDS. Although such obvious examples of correlation may not exist in a given synthetic CDO, counterparty risk and default risk could interact in much more subtle and complex ways. Full examination of this topic is beyond the scope of this article.

In a synthetic CDO, the investors are the protection sellers and the SPV’s counterparties are the protection buyers. As such, the payments owed by the SPV’s counterparties could be much smaller than the total notional amount of protection sold by the SPV. Additionally, any perceived counterparty risk could be mitigated through the use of collateral. That is, those counterparties that have or are downgraded to low credit ratings could be required to post collateral. As a result, we might choose to ignore counterparty risk altogether as a practical matter and focus only on default risk. This would allow us to more easily compare synthetic and ordinary CDOs and would allow us to use essentially the same model to rate both. Full examination of this topic is also beyond the scope of this article. For more on this topic and and others, go here.

Synthetic CDO Ratings And Super Senior Tranches

After we have decided upon a model and run some simulations, we will produce a chart that provides the probability that losses will exceed X. We will now compare two synthetic CDOs with identical underlying assets but different tranches. Assume that the tranches are broken down by color in the charts below. Additionally, assume that in our rating system (Joe’s Rating System), a tranche is AAA rated if the probability of full repayment of principle and interest is at least 99%.

default-model-tranched-sidebyside2

Note that our first synthetic CDO has only 3 tranches, whereas the second has 4, since in in the second chart, we have subdivided the 99th percentile. The probability that losses will reach into the green tranche is lower than the probability that losses will reach into the yellow tranches of either chart. Because the yellow tranches are AAA rated in both charts, certain market participants refer to the green tranche as super senior. That is, the green tranche is senior to a AAA rated tranche. This is a bit of a misnomer. Credit ratings and seniority levels are distinct concepts and the term “super senior” conflates the two. A bond can be senior to all others yet have a low credit rating. For example, the most senior obligations of ABC corporation, which has been in financial turmoil since incorporation, could be junk-rated. And a bond can be subordinate to all others but still have a high credit rating. So, we must treat each concept independently. That said, there is a connection between the two concepts. At some point, subordination will erode credit quality. That is, if we took the same set of cash flows and kept subdividing and subordinating rights in that set of cash flows, eventually the lower tranches will have a credit rating that is inferior to the higher tranches. It seems that the two concepts have been commingled in the mental real estate of certain market participants as a result of this connection.

Blessed Are The Forgetful

So is there a difference between AAA notes subordinated to some “super senior” tranche and plain old senior AAA rated notes? Yes, there is, but that shouldn’t surprise you if you distinguish between credit ratings and seniority. You should notice that the former note is subordinated while the latter isn’t. And bells should go off in your mind once you notice this. The rating “AAA” describes the probability of full payment of interest and principle. Under Joe’s Ratings, it tells you that the probability that losses will reach the AAA tranche is less than 1%. The AAA rating makes no other statements about the notes. If losses reach the point X = L*, investors in the subordinated AAA notes (the second chart, yellow tranche) will receive nothing while investors in the senior AAA notes (the first chart, yellow tranche) will not be fully paid, but will receive a share of the remaining cash flows. This difference in behavior is due to a difference in seniority, not credit rating. If we treat these concepts as distinct, we should anticipate such differences in behavior and plan accordingly.

Systemic Counterparty Confusion: Credit Default Swaps Demystified

It Is A Tale Told By An Idiot

The press loves a spectacle. There’s a good reason for this: panic increases paranoia, which increases the desire for information, which increases their advertising revenues. Thus, the press has an incentive to exaggerate the importance of the events they report. As such, we shouldn’t be surprised to find the press amping up fears about the next threat to the “real economy.”

When written about in the popular press, terms such as “derivative” and “mortgage backed security” are almost always preceded by adjectives such as “arcane” and “complex.” They’re neither arcane nor complex. They’re common and straightforward. And the press shouldn’t assume that their readers are too dull to at least grasp how these instruments are structured and used. This is especially true of credit default swaps.

Much Ado About Nothing

So what is the big deal about these credit default swaps? Surely, there must be something terrifying and new about them that justifies all this media attention? Actually, there really isn’t. That said, all derivatives allow risk to be magnified (which I plan to discuss in a separate article). But risk magnification isn’t particular to credit default swaps. In fact, considering the sheer volume of spectacular defaults over the last year, the CDS market has done a damn good job of coping.  Despite wild speculation of impending calamity by the press, the end results have been a yawn . So how is it that Reuters went from initially reporting a sensational $365 billion in losses to reporting (12 days later) only $5.2 billion in actual payments? There’s a very simple explanation: netting, and the fact that they just don’t understand it. The CDS market is a swap market, and as such, the big players in that market aren’t interested in taking positions where their capital is at risk. They are interested in making money by creating a market for swaps and pocketing the difference between the prices at which they buy and sell. They are classic middlemen and essentially run an auction house.

Deus Ex Machina

The agreements that document credit default swaps are complex, and in fairness to the press, these are not things we learn about in grammar school – for a more detailed treatment of these agreements, look here. Despite this, the basic mechanics of a credit default swap are easy to grasp. Let’s begin by introducing everyone: protection buyer (B) is one party and swap dealer (D) is the other. These two are called swap counterparties or just counterparties for short. Let’s first explain what they agree to under a credit default swap, and then afterward, we’ll examine why they would agree to it.

What Did You Just Agree To?

Under a typical CDS, the protection buyer, B, agrees to make regular payments (let’s say monthly) to the protection seller, D. The amount of the monthly payments, called the swap fee, will be a percentage of the notional amount of their agreement. The term notional amount is simply a label for an amount agreed upon by the parties, the significance of which will become clear as we move on. So what does B get in return for his generosity? That depends on the type of CDS, but for now we will assume that we are dealing with what is called physical delivery. Under physical delivery, if the reference entity defaults, D agrees to (i) accept delivery of certain bonds issued by the reference entity named in the CDS and (ii) pay the notional amount in cash to B. After a default, the agreement terminates and no one makes anymore payments. If default never occurs, the agreement terminates on some scheduled date. The reference entity could be any entity that has debt obligations.

Now let’s fill in some concrete facts to make things less abstract. Let’s assume the reference entity is ABC. And let’s assume that the notional amount is $100 million and that the swap fee is at a rate of 6% per annum, or $500,000 per month. Finally, assume that B and D executed their agreement on January 1, 2008 and that B made its first payment on that day.  When February 1, 2008 rolls along, B will make another $500,000 payment. This will go on and on for the life of the agreement, unless ABC triggers a default under the CDS. Again, the agreements are complex and there are a myriad of ways to trigger a default. We consider the most basic scenario in which a default occurs: ABC fails to make a payment on one of its bonds. If that happens, we switch into D’s obligations under the CDS. As mentioned above, D has to accept delivery of certain bonds issued by ABC (exactly which bonds are acceptable will be determined by the agreement) and in exchange D must pay B $100 million.

Why Would You Do Such A Thing?

To answer that, we must first observe that there are two possibilities for B’s state of affairs before ABC’s default: he either (i) owned ABC issued bonds or (ii) he did not. I know, very Zen. Let’s assume that B owned $100 million worth of ABC’s bonds. If ABC defaults, B gives D his bonds and receives his $100 million in principal (the notional amount). If ABC doesn’t default, B pays $500,000 per month over the life of the agreement and collects his $100 million in principal from the bonds when the bonds mature. So in either case, B gets his principal. As a result, he has fully hedged his principal. So, for anyone who owns the underlying bond, a CDS will allow them to protect the principal on that bond in exchange for sacrificing some of the yield on that bond.

Now let’s assume that B didn’t own the bond. If ABC defaults, B has to go out and buy $100 million par value of ABC bonds. Because ABC just defaulted, that’s going to cost a lot less than $100 million. Let’s say it costs B $50 million to buy ABC issued bonds with a par value of $100 million. B is going to deliver these bonds to D and receive $100 million. That leaves B with a profit of $50 million. Outstanding. But what if ABC doesn’t default? In that case, B has to pay out $500,000 per month for the life of the agreement and receives nothing. So, a CDS allows someone who doesn’t own the underlying bond to short the bond. This is called synthetically shorting the bond. Why? Because it sounds awesome.

So why would D enter into a CDS? Again, most of the big protection sellers buy and sell protection and pocket the difference. But, this doesn’t have to be the case. D could sell protection without entering into an offsetting transaction. In that case, he has synthetically gone long on the bond. That is, he has almost the same cash flows as someone who owns the bond.