```
img_matrix_R = I(:,:,1);
img_matrix_G = I(:,,,2);
img_matrix_B = I(:,;,3);
```

function [final_avg_matrix final_indexes] = partition_image_vectorized(I)
\%these values will depend upon application, but these should be fine in general
N_min $=5$;
$\mathrm{N} \_$max $=25$;
max_total_diff $=0$;
for $\mathrm{N}=\mathrm{N} \_$min : N_max
[total_diff_R avg_matrix_R indexes] = test_image_consistency(img_matrix_R,N);
\%calls a more efficient version once we've solved for the indexes
[total_diff_G avg_matrix_G] = calculate_total_im_diff(indexes, img_matrix_G, N);
[total_diff_B avg_matrix_B] = calculate_total_im_diff(indexes, img_matrix_B, N);
current_total_diff = (total_diff_R + total_diff_G + total_diff_B)/N^2;
if(current_total_diff > max_total_diff)
max_total_diff = current_total_diff;
final_avg_matrix = [avg_matrix_R; avg_matrix_G; avg_matrix_B];
final_indexes = indexes;
endif
endfor
endfunction

