Phoenicians as Common Ancestor

In a previous article, I showed that the people of Cameroon test as the ancestors of Heidelbergensis, Neanderthals, and Denisovans, with respect to their mtDNA. The obvious question is, how is it that archaic humans are still alive today? The answer is that they’re probably not truly archaic humans, but that their mtDNA is truly archaic. This is possible for the simple reason that mtDNA is remarkably stable, and can last for thousands of years without changing much at all. However, there’s still the question of where modern humans come from, i.e., is there a group of people that test as the common ancestors of modern human populations. The answer is yes, and it’s the Phoenicians, in particular, a group of mtDNA genomes found in Puig des Molins. Astonishingly, the Phoenicians test as the common ancestor of the Pre-Roman Egyptians (perhaps not terribly astonishing), and the modern day Thai and Sri Lankans, the latter two being simply incredible, and perhaps requiring a reconsideration of purported history.

The overall test is straight forward, and cannot be argued with: Given genomes A, B, and C, if genome A is the ancestor of genomes B and C, then it must be the case that genomes A and B, and A and C, have more bases in common than genomes B and C. This is a relatively simple fact of mathematics, that you can find in my paper, A New Model of Computational Genomics [1], specifically, in footnote 16. However, you can appreciate the intuition right away: imagine two people tossing coins simultaneously, and writing down the outcomes. Whatever outcomes they have in common (e.g., both throwing heads), will be the result of chance. For the same reason, if you start with genome A, and you allow it to mutate over time, producing genomes B and C, whatever bases genomes B and C have in common will be the result of chance, and as such, they should both mutate away from genome A, rather than developing more bases in common with each other by chance. This will produce the inequalities |AB| > |BC| and |AC| > |BC|, where |AB| denotes the number of bases genomes A and B have in common.

For the same reason, if you count the number of matches between two populations at a fixed percentage of the genome, the match counts between populations A, B, and C, should satisfy the same inequalities, for the same reason. For example, fix the matching threshold to 30% of the full genome, and then count the number of genomes between populations A and B that are at least a 30% match or more to each other. Do the same for A and C, and B and C. However, you’ll have to normalize this to an [0,1] scale, otherwise your calculations will be skewed by population size. My software already does this, so there’s nothing to do on that front.

In this case, I’ve run several tests, all of which use the second population-level method described above. We begin by showing that the Phoenicians are the common ancestor of the modern day Sri Lankans and Sardinians. For this, set the minimum match count to 99.65% of the full genome size. This will produce a normalized score of 0.833 between the Phoenicians and Sri Lankans, and 0.800 between the Phoenicians and Sardinians. However, the score between the Sri Lankans and the Sardinians is 0.200, which plainly satisfies the inequality. This is consistent with the hypothesis that the Phoenician maternal line is the ancestor of both the modern day Sri Lankans and Sardinians. Setting the minimum match count to 88.01% of the genome, we find that the score between the Phoenicians and the Pre-Roman Egyptians is 0.500, and the score between the Phoenicians and the Sri Lankans is 1.000. The score between the Pre-Roman Egyptians and the Sri Lankans is instead 0.000, again satisfying the inequality. This is consistent with the hypothesis that the Phoenicians are the common ancestor of both the Pre-Roman Egyptians and the modern day Sri Lankans.

This seems peculiar, since the Phoenicians are Middle Eastern people, and the genomes in question are from Ibiza. However, the Phoenicians in particular were certainly sea-faring people, and moreover, civilization in the Middle East goes back to at least Ugarit, which could date as far back as 6,000 BC. Though not consistent with purported history, this at least leaves open the possibility that people from the Middle East traveled to South Asia. This might sound too ambitious for the time, but the Phoenicians made it to Ibiza from the Middle East, which is roughly the same distance as the Middle East to Sri Lanka, both of which are islands. Once you’re in South Asia, the rest of the region becomes accessible.

If this is true, then it shouldn’t be limited to Sri Lanka, and this is in fact the case. In particular, the Thai also test as the descendants of the Phoenicians, using the same analysis. Even more interesting, both the modern day Norwegians, Swedes, and Finns test as the descendants of the Thai, again using the same analysis. Putting it all together, it seems plausible that early Middle Eastern civilizations not only visited but settled South Asia, and that some of them came back, in particular to Egypt, and Scandinavia. This could explain why the Pre-Roman Egyptians are visibly Asian people, and further, why Thai-style architecture exists in early Scandinavia. Though the latter might sound totally implausible, it is important to note that some Thai and Norwegian people are nearly identical on the maternal line, with about 99.6% of the genome matching. Something has to explain that. Also note that the Sri Lankan maternal line was present throughout Europe around 33,000 BC. This suggests plainly that many Europeans, and the Classical World itself, descend from the Phoenicians. That somewhat remote populations also descend from them is not too surprising, in this context.

Further, there are alarming similarities between the Nordic religions and alphabet, and the Canaanite religions and alphabet, in particular, the gods El / Adon and Odin, with their sons, Baal and Baldur, respectively. Once you place greater emphasis on genetic history, over written history, this story sounds perfectly believable. Further still, if people migrated back from South Asia to the West, then this should again not be limited to Scandinavia, and this is in fact the case. Astonishingly, the Pre-Roman Egyptians test as the descendants of the Thai people, using the same analysis. Obviously the Pre-Roman Egyptians were not the first Africans, and in fact, everything suggests they’re South Asian, and for the same reason, none of this implies that modern day Scandinavians are the first Scandinavians, and instead, again, it looks like many Norwegians and Finns are instead, again, South Asian.

Finally, this is all consistent with the obvious fact that the most advanced civilizations in the world, i.e., the Classical World, are all proximate to the Middle East, suggesting that the genesis of true human intelligence, could have come from somewhere near Phoenicia.

Leave a comment